
CS103 Handout 12
Spring 2017 April 14, 2017

Problem Set 2

This second problem set explores mathematical logic. We've chosen the questions here to help you
get a more nuanced understanding for what first-order logic statements mean (and, importantly,
what they don't mean) and to give you a chance to apply first-order logic in the realm of proofs. By
the time you've completed this problem set, we hope that you have a much better grasp of mathe-
matical logic and how it can help improve your proofwriting structure.

Before attempting this problem set, we recommend that you do the following:

• Familiarize yourself with the online Truth Table Tool and play around with it a bit to get a
feel for the propositional connectives.

• Read the online “Guide to Negating Formulas” for more information about how to find the
negations of propositional and first-order formulas.

• Read the online “Guide to Logic Translations” for more information about how to translate
statements into first-order logic.

Checkpoint Questions Due Monday, April 17th at the start of class.
Remaining Questions Due Friday, April 21st at the start of class.

2 / 8

Write your solutions to the following problems and submit them electronically on GradeScope by this
Monday, April 17th at the start of lecture. As before, these problems will be graded on a 0/1/2 scale based
on whether or not you have made a good, honest effort to complete all of them. We will try to get these
problems returned to you with feedback on your proof style this upcoming Wednesday.

Checkpoint Problem: Interpersonal Dynamics (2 Points if Submitted)
The diagram to the left represents a set of people named A, B,
C, D, E, and F. If there's an arrow from a person x to a person
y, then person x loves person y. We'll denote this by writing
Loves(x, y). For example, in this picture, we have Loves(C, D)
and Loves(E, E), but not Loves(D, A).

There are no “implied” arrows anywhere in this diagram. For
example, even though A loves C and C loves E, the statement
Loves(A, E) is false because there's no direct arrow from A to E.
Similarly, even though C loves D, the statement Loves(D, C) is
false because there's no arrow from D to C.

Below is a list of 16 formulas in first-order logic about the
above picture. In those formulas, the letters A through F refer to
individual people, and P represents the set of all the people. For
each formula, determine whether that formula is true or false.
No justification is necessary.

i. Loves(A, C) ∨ Loves(D, C)

ii. Loves(C, B) ∨ Loves(C, D)

iii. Loves(B, E) → Loves(D, A)

iv. Loves(A, E) → Loves(A, A)

v. Loves(A, C) → Loves(E, C)

vi. Loves(C, B) → Loves(B, C)

vii. Loves(A, B) ↔ Loves(E, E)

viii. Loves(C, A) ↔ Loves(B, B)

ix. ∀x ∈ P. Loves(x, x)

x. ∃x ∈ P. Loves(x, x)

xi. ∀x ∈ P. ∀y ∈ P. (Loves(x, y) ↔ Loves(y, x))

xii. ∃x ∈ P. ∃y ∈ P. (Loves(x, y) ↔ Loves(y, x))

xiii. ∀x ∈ P. (Loves(x, x) → ∃y ∈ P. Loves(x, y))

xiv. ∀x ∈ P. (Loves(x, x) → ∃y ∈ P. (Loves(x, y) ∧ x ≠ y))

xv. ∃x ∈ P. (Loves(x, x) ∧ ∀y ∈ P. Loves(x, y))

xvi. ∃x ∈ P. (Loves(x, x) → ∀y ∈ P. Loves(x, y))

A

B C D

E F

3 / 8

The remainder of these problems should be completed and
submitted online by Friday, April 21st at the start of class.

Problem One: Implies and False
Although propositional logic has many different connectives, it turns out that any formula in propositional
logic can be rewritten as an equivalent propositional formula that uses only the ¬, ∧, and ⊤ connectives.
(You don't need to prove this). In this problem, you will prove a different result: every formula in proposi-
tional logic can be rewritten as an equivalent logical formula purely using the → and ⊥ connectives.

i. Find a formula that's logically equivalent to ¬p that uses only the variable p and the → and ⊥ con-
nectives. No justification is necessary.

ii. Find a formula that's logically equivalent to ⊤ that uses only the → and ⊥ connectives. No justifi-
cation is necessary.

iii. Find a formula that's logically equivalent to p ∧ q that uses only the variables p and q and the →
and ⊥ connectives. No justification is necessary.

Since you can express ¬, ∧, and ⊤ using just → and ⊥, every possible formula in propositional logic can
be expressed using purely the → and ⊥ connectives. Nifty!

Problem Two: Ternary Conditionals
Many programming languages support a ternary conditional operator. For example, in C, C++, and Java,
the expression x ? y : z means “evaluate the boolean expression x. If it's true, the entire expression evalu-
ates to y. If it's false, the entire expression evaluates to z.”

In the context of propositional logic, we can introduce a new ternary connective ?: such that p ? q : r
means “if p is true, the connective evaluates to the truth value of q, and otherwise it evaluates to the truth
value of r.”

i. Based on this description, write a truth table for the ?: connective.

ii. Find a propositional formula equivalent to p ? q : r that does not use the ?: connective. Justify
your answer by writing a truth table for your new formula.

It turns out that it's possible to rewrite any formula in propositional logic using only ?:, ⊤, and ⊥. The
rest of this question will ask you to show this.

iii. Find a formula equivalent to ¬p that does not use any connectives besides ?:, ⊤, and ⊥. No justifi-
cation is necessary.

iv. Find a formula equivalent to p → q that does not use any connectives besides ?:, ⊤, and ⊥. No
justification is necessary.

Since all remaining connectives can be written purely in terms of ¬ and →, any propositional formula us-
ing the seven standard connectives can be rewritten using only the three connectives ?:, ⊤, and ⊥.

The fact that all propositional formulas can be written purely in terms of ?:, ⊤, and ⊥ forms the basis for
the binary decision diagram, a data structure for compactly encoding propositional formulas. Binary deci-
sion diagrams have applications in program optimization, graph algorithms, and computational complex-
ity theory. Take CS166 or CS243 for more info!

4 / 8

Problem Three: Executable Logic
Consider the following first-order logic formula, where P is a set of people:

∃x ∈ P. (Happy(x) ∧ Loves(x, x))

i. Write C++ or Java code for a method

boolean isFormulaTrueFor(List<Person> P)

that accepts as input a list of people P and returns whether the above formula is true for that par-
ticular list of people. Assume you have access to these helper methods, which have already been
written for you:

boolean isHappy(Person p)

boolean loves(Person p1, Person p2)

Briefly justify your answer. You do not need to worry about efficiency, but please make sure that
your code is clear and easy to understand.

ii. Repeat the above exercise with this first-order logic formula:

∀x ∈ P. (Happy(x) → Loves(x, x))

iii. Repeat the above exercise with this first-order logic formula:

∀x ∈ P. (Happy(x) →
∃y ∈ P. (Happy(y) ∧ Loves(x, y))

)

iv. Repeat the above exercise with this first-order logic formula:

∃x ∈ P. (Happy(x) ↔
∀y ∈ P. (Loves(x, y))

)

In the course of solving the above problems, use this syntax to iterate over the contents of a list:

for (Person x: P) {
 /* … do something with person x … */
}

You should be able to solve all these problems using standard loops, if statements, etc. and without need-
ing to use any libraries. Feel free to write helper functions if you’d like.

5 / 8

Problem Four: First-Order Negations
For each of the first-order logic formulas below, find a first-order logic formula that is the negation of the
original statement. Your final formula must not have any negations in it except for direct negations of
predicates. For example, the negation of the formula ∀x. (P(x) → ∃y. (Q(x) ∧ R(y))) could be found by
pushing the negation in from the outside inward as follows:

¬(∀x. (P(x) → ∃y. (Q(x) ∧ R(y))))
∃x. ¬(P(x) → ∃y. (Q(x) ∧ R(y)))
∃x. (P(x) ∧ ¬∃y. (Q(x) ∧ R(y)))
∃x. (P(x) ∧ ∀y. ¬(Q(x) ∧ R(y)))
∃x. (P(x) ∧ ∀y. (Q(x) → ¬R(y)))

Show every step of the process of pushing the negation into the formula (along the lines of what is done
above). You don't need to formally prove that your negations are correct. We strongly recommend reading
over the Guide to Negations before starting this problem.

i. ∃p. (Problem(p) ∧
 ∀g. (Program(g) → ¬Solves(g, p))
)

ii. ∀x ∈ ℝ. ∀y ∈ ℝ. (x < y →
 ∃q ∈ ℚ. (x < q ∧ q < y)
)

iii. (∀x. ∀y. ∀z. (R(x, y) ∧ R(y, z) → R(x, z))) → (∀x. ∀y. ∀z. (R(y, x) ∧ R(z, y) → R(z, x)))

iv. ∀x. ∃S. (Set(S) ∧
 ∀z. (z ∈ S ↔ z = x)
)

v. ∀k. (SixClique(k) →
 ∃t. (Triangle(t, k) ∧
 (∀e. (Edge(e, t) → Red(e)) ∨ ∀e. (Edge(e, t) → Blue(e)))
)
)

Problem Five: This, But Not That
Below is a series of pairs of statements about a group of people. For each pair, draw a picture of a single
group of people where the first statement is true about that group of people and the second statement is
false about that group of people. Then, briefly justify your answer. For simplicity, please draw your pic-
tures in the style of the one in the checkpoint problem.

Make this statement true… … and this statement false.

i. ∀y ∈ P. ∃x ∈ P. Loves(x, y) ∃x ∈ P. ∀y ∈ P. Loves(x, y)

ii. ∀x ∈ P. (Smiling(x) ∨ Huge(x)) (∀x ∈ P. Smiling(x)) ∨ (∀x ∈ P. Huge(x))

iii. (∃x ∈ P. Smiling(x)) ∧ (∃x ∈ P. Huge(x)) ∃x ∈ P. (Smiling(x) ∧ Huge(x))

iv. (∀x ∈ P. Happy(x)) → (∀y ∈ P. Huge(y)) ∀x ∈ P. ∀y ∈ P. (Happy(x) → Huge(y))

v. ∃x ∈ P. (Loves(x, x) →
 ∀y ∈ P. (Loves(y, y))
)

(∀x ∈ P. Loves(x, x)) ∨ (∀x ∈ P. ¬Loves(x, x))

6 / 8

Problem Six: Translating into Logic
In each of the following, you will be given a list of first-order predicates and functions along with an Eng-
lish sentence. In each case, write a statement in first-order logic that expresses the indicated sentence.
Your statement may use any first-order construct (equality, connectives, quantifiers, etc.), but you must
only use the predicates, functions, and constants provided. You do not need to provide the simplest for-
mula possible, though we'd appreciate it if you made an effort to do so. ☺

We strongly recommend reading the Guide to First-Order Logic Translations before starting this problem.

i. Given the predicate

Natural(x), which states that x is an natural number

and the functions

x + y, which represents the sum of x and y, and
x · y, which represents the product of x and y

write a statement in first-order logic that says “for any n ∈ ℕ, n is even if and only if n2 is even.”
Remember that numbers are not a part of first-order logic, so you cannot use the number 2 here.

ii. Given the predicates

Person(p), which states that p is a person;
Kitten(k), which states that k is a kitten; and
HasPet(o, p), which states that o has p as a pet,

write a statement in first-order logic that says “someone has exactly two pet kittens and no other
pets.”

iii. The axiom of pairing is the following statement: given any two distinct objects x and y, there's a
set containing x and y and nothing else. Given the predicates

x ∈ y, which states that x is an element of y, and
Set(S), which states that S is a set,

write a statement in first-order logic that expresses the axiom of pairing.

iv. Given the predicates

x ∈ y, which states that x is an element of y, and
Set(S), which states that S is a set,

write a statement in first-order logic that says “every set has a power set.”

v. Given the predicates

Lady(x), which states that x is a lady;
Glitters(x), which states that x glitters;
IsSureIsGold(x, y), which states that x is sure that y is gold;
Buying(x, y), which states that x buys y; and
StairwayToHeaven(x), which states that x is a Stairway to Heaven;

write a statement in first-order logic that says “there's a lady who's sure all that glitters is gold, and
she's buying a Stairway to Heaven.”*

* Let's face it – the lyrics to Led Zeppelin's “Stairway to Heaven” are impossible to decipher. Hopefully we can gain some
insight by translating them into first-order logic!

7 / 8

The remaining three problems on this problem set are designed to give you some more practice writing
proofs. Remember that, when writing up your final answers, you should still obey all the proofwriting
stylistic conventions we’ve used throughout the quarter: write in complete sentences, don’t use mathemati-
cal symbols instead of plain English, etc. In particular, please do not use first-order logic symbols or nota-
tion in your proofs; while FOL is extremely useful for expressing definitions and reasoning about nega-
tions, it’s generally not encountered in written proofs.

Problem Seven: Hereditary Sets
Let’s begin with a fun little definition:

A set S is called a hereditary set if all its elements are hereditary sets.

This definition might seem strange because it's self-referential – it defines the hereditary sets in terms of
other hereditary sets! However, it turns out that this is a perfectly reasonable definition to work with, and
in this problem you'll explore some properties of these types of sets.

i. Given the self-referential nature of the definition of hereditary sets, it's not even clear that heredi-
tary sets even exist at all! As a starting point, prove that there is at least one hereditary set.

ii. Prove that if S is a hereditary set, then ℘(S) is also a hereditary set.

Problem Eight: Rational and Irrational Numbers
A quadratic equation is an equation of the form ax2 + bx + c = 0. A root of this equation is a real number
x such that ax2 + bx + c = 0. For example, the quadratic equation x2 – 3x + 2 = 0 has 1 and 2 as roots.

Here's an interesting fact: if a, b, and c are odd integers, then ax2 + bx + c = 0 cannot have any roots that
are rational numbers. Surprisingly, one of the easiest ways to prove this result is to use properties of odd
and even numbers.

Prove that if a, b, and c are odd integers, then ax2 + bx + c = 0 has no rational roots. Although you're
probably tempted to pull out the quadratic formula here, we recommend that you not do this. Instead,
look at what happens if you plug x = p/q into the formula ax2 + bx + c = 0, and consider the possible pari-
ties for p and q (the parity of a number is whether it's even or odd).

As a hint, 0 is even.

8 / 8

Problem Nine: Tournament Winners
Here’s one more problem to help you practice your proofwriting. It’s a classic CS103 problem, and we
hope that you enjoy it!

A tournament is a contest among n players. Each player plays a game against
each other player, and either wins or loses the game (let's assume that there are
no draws). We can visually represent a tournament by drawing a circle for each
player and drawing arrows between pairs of players to indicate who won each
game. For example, in the tournament to the left, player A beat player E, but
lost to players B, C, and D.

A tournament winner is a player in a tournament who, for each other player,
either won her game against that player, or won a game against a player who in
turn won his game against that player (or both). For example, in the graph on

the left, players B, C, and E are tournament winners. However, player D is not a tournament winner, be-
cause he neither beat player C, nor beat anyone who in turn beat player C. Although player D won against
player E, who in turn won against player B, who then won against player C, under our definition player D
is not a tournament winner. (Make sure you understand why!)

One of the most fundamental results about tournaments is the following: any tournament with at least one
player has a tournament winner. The first part of this problem asks you to prove this.

i. Let T be an arbitrary tournament and p be any player in that tournament. Prove the following
statement: if p won more games than anyone else in T or is tied for winning the greatest number
of games, then p is a tournament winner in T. This shows that every tournament with at least one
player has at least one winner.

ii. A pseudotournament is like a tournament, except that exactly one pair of people don't play each
other. Show that for any n ≥ 2, there’s a pseudotournament P with n players and no tournament
winners.

Extra Credit Problem: Logic and Language (1 Point Extra Credit)
A while back, someone posted a blog entry where they translated several famous quotes into first-order
logic. (The syntax they use is a little bit different than what we're using, and they reference some concepts
we haven't covered yet, but it's still quite a fun read.) Find two quotes, one that can nicely be translated
into first-order logic and one that, for some reason, can't be easily translated into first-order logic. Provide
a translation of the first statement, briefly explain why it's accurate, and explain why the second one can't
easily be translated.

A

B

C

D

E

http://jdh.hamkins.org/famous-quotations-in-their-original-language/
http://jdh.hamkins.org/famous-quotations-in-their-original-language/

